How Genetic Engineering Will Change Everything Forever ?

Designer babies, the end of diseases, genetically modified humans that never age. Outrageous things that used to be science fiction are suddenly becoming reality. The only thing we know for sure is that things will change irreversibly.

I really feel that CRISPR is going to cause global conflict, both in a society on its ethics and between "edited, advanced" societies and us "normal" people.

Genetic engineering is a process that alters the genetic make-up of an organism by either removing or introducing DNA. DNA can be introduced directly into the host organism or into a cell that is then fused or hybridized with the host. This relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro-injection, macro-injection or micro-encapsulation. 

Plants, animals or micro organisms that have been changed through genetic engineering are termed genetically modified organisms or GMOs. If genetic material from another species is added to the host, the resulting organism is called transgenic. If genetic material from the same species or a species that can naturally breed with the host is used the resulting organism is called cisgenic. If genetic engineering is used to remove genetic material from the target organism the resulting organism is termed a knockout organism. In Europe genetic modification is synonymous with genetic engineering while within the United States of America and Canada genetic modification can also be used to refer to more conventional breeding methods.

Genome engineering refers to the strategies and techniques developed for the targeted, specific modification of the genetic information – or genome – of living organisms.

It represents a very active field of research because of the wide range of possible applications, particularly in the areas of human health - the correction of a gene carrying a harmful mutation, the production of therapeutic proteins, the elimination of persistent viral sequences - agricultural biotechnology - the development of new generations of genetically modified plants - and for the development of research tools - for example, to explore the function of a gene.


Early technologies developed to insert a gene into a living cell, such as transgenesis, are limited by the random nature of the insertion of the new sequence into the genome. The new gene is positioned blindly, and may inactivate or disturb the functioning of other genes or even cause severe unwanted effects; it may trigger a process of cancerization, for example. Furthermore, these technologies offer no degree of reproducibility, as there is no guarantee that the new sequence will be inserted at the same place in two different cells.
The major advantage of genome engineering, which uses more recent knowledge and technology, is that it enables a specific area of the DNA to be modified, thereby increasing the precision of the correction or insertion, preventing any cell toxicity and offering perfect reproducibility.

Methods in genome engineering:

·      Insertion involves introducing a gene into a chromosome to obtain a new function (for example to obtain a better drought-resistant plant) or to compensate for a defective gene, particularly by making it possible to manufacture a functional protein if the protein produced by the patient is defective (such as factor VIII in hemophilia A).

·       Inactivation, or “knock-out”, is today mainly used in fundamental research to shed light on the function of a gene by observing the anomalies that occur as a result of its inactivation. It can also have other applications, for example to remove a persistent viral sequence from infected cells, or in agriculture to eliminate the irritant or allergenic properties of a plant.

·      Correction aims to remove and replace a defective gene sequence with a functional sequence. This correction can be performed on a very short sequence, sometimes just a few nucleotides, such as in the case of drepanocytosis (sickle cell anemia). In plants, this manipulation can also help improve the properties of a species without the addition of foreign DNA.

By Krisje1988 (Own work) [CC BY-SA  (4.0)], via Wikimedia Commons


CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats) are genetic elements that bacteria use as a kind of acquired immunity to protect against viruses. They consist of short sequences that originate from viral genomes and have been incorporated into the bacterial genome. Cas (CRISPR associated proteins) process these sequences and cut matching viral DNA sequences. By introducing plasmids containing Cas genes and specifically constructed CRISPRs into eukaryotic cells, the eukaryotic genome can be cut at any desired position. Several companies, including Editas, have been working to monetize the CRISPR method while developing gene-specific therapies.

By Dana Carroll [CC BY-SA  (3.0)], via Wikimedia Commons

Zinc finger nucleases are research and development tools that have already been used to modify a range of genomes, in particular by the laboratories in the Zinc Finger Consortium. The US company Sangamo BioSciences uses zinc finger nucleases to carry out research into the genetic engineering of stem cells and the modification of immune cells for therapeutic purposes. Modified T lymphocytes are currently undergoing phase I clinical trials to treat a type of brain tumor (glioblastoma) and in the fight against AIDS.

Genetic engineering, also called genetic modification, is the direct manipulation of an organism's genome using biotechnology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. New DNA is obtained by either isolating and copying the genetic material of interest using molecular cloning methods or by artificially synthesizing the DNA. A construct is usually created and used to insert this DNA into the host organism. As well as inserting genes, the process can be used to remove, or "knock out", genes. The new DNA can be inserted randomly, or targeted to a specific part of the genome.
An organism that is generated through genetic engineering is considered to be genetically modified (GM) and the resulting entity is a genetically modified organism (GMO). The first GMOs were bacteria generated in 1973 and the first GM animals were mice in 1974. Insulin-producing bacteria were commercialized in 1982 and genetically modified food has been sold since 1994. GloFish, the first GMO designed as a pet, was sold in the United States in December 2003. 

Genetic engineering techniques have been applied in numerous fields including research, agriculture, industrial biotechnology, and medicine. Enzymes used in laundry detergent and medicines such as insulin and human growth hormone are now manufactured in GM cells, experimental GM cell lines and GM animals such as mice or zebrafish are being used for research purposes, and genetically modified crops have been commercialized.

Next Post »